ヨシ（Phragmites australis Trin.）の成長過程における
葉面積簡易測定法

齋藤宗勝・齋藤信夫・竹内健吾

緑色植物の葉の大きさは光合成による物質生産やその成長を左右する基本的要素の一つであり、生態学の領域において関心の高い要素である。葉面積の測定には自動葉面積計 (Murata 1967) を用いるのが一般的で、近年は画像解析ソフトも利用できるパソコン上で部の解析方法 (石井 2007) を提案されている。また、植物群落の生産構造において、葉の乾燥重量を物質生産の場の大きさとしてとらえる間接的法が採られている。いずれの方法においても葉面積の測定には、対象の葉を植物体から切り離して行うのが通例であり、対象の葉は 1 回限りである。しかし、植物の成長期中の中成長期を調べようとする場合にはフィールドにおいて同一植物体の同一葉を連続的に測定することが必要となり、前述の方法で生かしたまま多数の同一葉を繰返し測定することは困難である。このような問題を解決するため、生育中の葉の部分的な計測によって面積を求めることができないかという点について検討した。

多くの植物で、同一種の植物の葉は互いに似た形を採っているのがほとんどで、ヨシやススキ、ササ類などイネ科植物の葉は広葉株で全縁といった単純な形をしており、その大きさを左右する要因は葉身の長さと幅である。筆者らは、青森県の津軽平野を流れる岩木川下流の河川敷におけるヨシ群落の人為的な整理による影響を調べたのであたって、ヨシの成長に伴う葉面積増大の経緯の追跡や葉面積指数の推定を行う目的で、ヨシの葉の葉長と葉幅から葉面積を求めめる方法と、葉の乾燥重量から葉面積を求める簡易的な方法を得たので報告する。

なお、本研究は岩木川における河川生態学研究会の総合的な調査研究の一環として実施されたものである。

方 法

青森県北津軽郡中泊町の岩木川河川敷の刈り取りや火入れ等の人為的影響を受けていないヨシ原のヨシから 2007 年 8 月下旬に 233 個体のヨシ葉を無作為に採取した。採取した葉は持ち帰り、葉長 (L) と最大幅 (W) の計測を行い、画像解析ソフト LIA32 (山本一清) によってそれぞれの葉面積 (A) を求め、その平均値を 105°C の乾燥器による乾燥処理を行って乾燥重量 (Dw) を測定した。葉長は 2.47~76.60 cm、葉の最大幅は 0.58~3.71 cm の範囲であった。これとは別に、2004 年 6 月に同県三沢市の仏教千葉地のヨシ原から採取した 108 個体のヨシ葉についても葉長と最大幅の測定を行った。この時の葉長は 2.7~39.2 cm、幅は 0.90~4.30 cm の範囲であった。

測定した葉長 L と最大幅 W の積を算出し、自然対数 Ln (L × W) と実測葉面積の自然対数 Ln (A) に換算して散布図を作成して回帰式を求めた。乾燥重量についても自然対数 Ln (Dw) に換算して Ln (A) との散布図を作成して回帰式を求めた。

結果および考察

1) 葉長と葉幅と葉面積の関係

青森県岩木川河川敷におけるヨシ葉の葉長 L と葉幅 W の積の自然対数 Ln (L × W) と葉面積の自然対数 Ln (A) の間には次のような関係式が成立し、高い相関係数 (R² = 0.995) を示す正の相関が認められた（図 1）。
\[ \ln(A) = 0.9693 \times \ln(L \times W) - 0.294 \] \( (R^2 = 0.9958) \)

図1 岩木川河川敷におけるヨシの葉長・葉幅と葉平面積との関係
葉長（L）と葉幅（W）の積の自然対数と葉平面積（A）の自然対数の間には
\[ \ln(A) = 0.9693 \times \ln(L \times W) - 0.294 \] \( (R^2 = 0.9958) \)
の回帰式が成立する。

地のヨシでも強い相関をもった回帰式が成立し、フィールドにおけるヨシ葉の計測から葉平面積を算出することが可能であることが示唆された。また、それぞれの生育地における葉の収率には違いがあったが、回帰直線分析では信頼限界99%をもってこの係数（傾き）に有意差が認められ、生育地によってヨシの形態に若干の違いのあることが示唆された。この違いは、それぞれのヨシ集団が日本海側と太平洋側、あるいは河川敷と干拓地といった生育環境の違いや、遺伝形質の違いなどに帰因していると考えられるが、この点については今後研究に委ねたい。しかし、両式に違いがあったことは、精度を高めるためにはそれぞれの生育地ごとに算出し求めめるべきであることを示唆しているといえよう。さらに、この関係式は両生育地とも6月にサンプリングした葉によって得られたもので、季節による違いがあるかどうか今後の問題として残された。

葉長と葉幅といった基礎数として葉平面積を求める計算式はイネの葉（森ら 1978）で述べられているが、この場合は両数字の積の係数を乗じる方法で、対数を用いた本報の場合のほうが相関係数は若干高い結果となり、精度上優れているといえよう。

2）葉の乾燥重量と葉平面積の関係
岩木川河川敷のヨシ葉の乾燥重量（Dw）と葉平面積（A）それぞれの自然対数の散布図（図3）では、強い相関係数をもつ次のような回帰式が得られた。

\[ \ln(A) = -0.0365 \times [\ln(Dw)]^2 + 0.7566 \times \ln(Dw) + 4.8517 \] \( (R^2 = 0.9931) \)

ヨシ葉の乾燥重量から葉平面積を推定するこの回帰式においても高い相関（R^2 = 0.9931）が認められ、層別刈り取引による同化部の葉平面積推定に応用し得るものであると考えられた。

ここで得られた算出式の応用例として、2007年に岩木川河川敷で行ったヨシの成長期間における葉の総対数計測で得た葉平面積の推移を図4に示した。5月から急速に葉を展開させて7月に最大葉平面積を達した後、枯死または脱落によって葉平面積を減じていき、7月の最大値で葉平面積指数は4.00を超えていたことが示された。

葉の乾燥重量から葉平面積を推定する応用例と
図3 岩木川河川数におけるヨシの葉の乾燥重量と葉面積との相関関係
葉の乾燥重量（Dw）の自然対数と葉面積（A）の自然対数の関には
\[ \ln(A) = -0.0365 \times [\ln(Dw)]^2 + 0.7566 \times \ln(Dw) + 4.8517 \ (R^2=0.9931) \]
の回帰式が成立する。

図4 ヨシ群落の成長期間中における葉面積の変化
岩木川河川数のヨシ群落における葉長と葉幅の測定値から
\[ \ln(A) = 0.9693 \times \ln(L \times W) - 0.294 \]
の式で算出した4月から10月までの間の葉面積の変化。

そして、同年8月に津軽十三湖湖岸のヨシ群落で行った層別切り取りで得たデータを用いて面積の推定を行った（図5）。この際の葉面積指数は1.34と見積もり、群落内の照度の減衰とよく一致していた。

図5 津軽十三湖湖岸のヨシ群落における葉面積の層別垂直分布
層別に切り取ったヨシの葉の乾燥重量から
\[ \ln(A) = -0.0365 \times [\ln(Dw)]^2 + 0.7566 \times \ln(Dw) + 4.8517 \]
の式で算出した。

以上の結果から、得られたヨシの葉面積推定式はフィールド調査において利用しうる簡便な方法であると結論した。

引用文献
石井弘明 2007 針葉樹シュートの葉面積をはかる 森林科学 51: 54
森 敏夫・村山義治 1978 イネの葉面積測定に関する一考察 日作東北支部報 21: 99-100